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as (l-2) -I/* as x approaches F 1. Comparisons are made with the errors associated with derivatives 
of functions approximated by Fourier series, in which case it is reported that the errors only grow 
linearly with N and are evenly distributed throughout the domain, A method for reducing the error is 
discussed. 

A NUMERICAL METHOD FOK SOLVING SYSTEMS OF LINEAR ORUINARY DIFFERENTIAL EQUATIONS WITH 

RAPIDLY OSCILLATING SOLUTIONS. Ira B. Bernstein and Leigh Brookshaw, Departmenr of‘ Applied 
Physics, Yale University, Yale Station, New Haven, Connecticut 06520-2159, U.S.A. ; Peter A. Fox, 
Center Jx Solrr and Space Research, Yale University, P.O. Box 6666, New Haven, Connecticut 
065224666. U.S.A. 

A numerical method is presented which allows the accurate and efficient solution of systems of linear 
equations of the form dz,(.x)/d.u = z,?, A,,(x) z,(x) i= 1, 2, ,,., N, when the solutions vary rapidly 
compared with the A,,(x). The method consists of numerically developing a set of basis solutions charac- 
terized by new dependent variables which are slowly varying. These solutions can be accurately computed 
with an overhead that is substantially independent of the smallness of the scale length characterizing the 
solutions. Examples are given. 

DENSITY-SCALING: A NEW MONTE CARLO TECHNIQUE IN STATISTICAL MECHANICS. J. P. Valleau, 
Chemical Physics Theory Group, Lash Miller Laboratories, University of Toronto, Toronto, Ontario, 
CANADA MSS IAI. 

We demonstrate the feasibility of using “umbrella sampling” to do Monte Carlo Markov-sampling 
runs each covering a substantial range of density: “density-scaling Monte Carlo,” or DSMC. One can 
obtain in this way not only the usual canonical averages but also the relative free energy as a function 
of density. To test this it has been applied to systems for which there are some previous reliable results: 
the hard-sphere system and the restricted primitive model of 1 :l and 2:2 electrolytes. The method 
proves to be startlingly powerful in that very extensive results can be obtained with very few DSMC 
runs. An important further motivation is the prospect of using the technique to study phase transition 
regions. 

A COMPUTATIONAL MODEL OF THE COCHLEA USING THE IMMERSED BOUNDARY METHOD. Richard P. 
Beyer, Jr., Department qf Applied Mathematics, University of’ Washington, Seattle, Washington 
98125, U.S.A. 

In this work we describe a two-dimensional computational model of the cochlea (inner ear). The 
cochlea model is solved by modifying and extending Peskin’s immersed boundary method, originally 
applied to solving a model of the heart (J. Comput. Phys. 25 (1977), 220). This method solves the time- 
dependent incompressible Navier-Stokes equations in the presence of immersed boundaries. The fluid 
equations are specified on a fixed Eulerian grid while the immersed boundaries are specified on a moving 
Lagrangian grid. The immersed boundaries exert forces locally on the fluid. These local forces are seen 
by the fluid as external forces that are added to the other forces, pressure and viscous, acting on the 
fluid. The modifications and extension of Peskin’s method involve both the fluid solver and the calculation 
and transfer of immersed-boundary forces to the fluid. For the fluid, the NavierrStokes equations are 
solved on a doubly periodic rectangular grid in a second-order accurate manner using a projection 
method developed by Bell, Colella, and Glaz (Lawrence Livermore National Laboratory Report UCRL- 
98225, 1988). The extension of the immersed-boundary forces from the moving grid to the tixed fluid 
grid and the restriction of the fluid velocities from the fixed fluid grid to the moving grid have been 
moditied to be second-order accurate. The calculation of the immersed-boundary forces can be done 
either explicitly or implicitly or a combination of both. The cochlea is modelled as two fluid chambers 


